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Exact three-dimensional Casimir force amplitude,C function, and Binder’s cumulant ratio:
Spherical model results

Daniel M. Danchev
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 4, 1113 Sofia, Bulgaria

~Received 16 March 1998!

The three-dimensional mean spherical model on a hypercubic lattice with a film geometryL3`2 under
periodic boundary conditions is considered in the presence of an external magnetic fieldH. The universal
Casimir amplitudeD and the Binder’s cumulant ratioB are calculated exactly and found to beD5

22z(3)/(5p)'20.153051 andB52p/$A5ln3@(11A5)/2#%. A discussion on the relations between the finite
temperatureC function, usually defined for quantum systems, and the excess free energy~due to the finite-size
contributions to the free energy of the system! scaling function is presented. It is demonstrated that theC
function of the model equals 4/5 at the bulk critical temperatureTc . It is analytically shown that the excess free
energy is a monotonically increasing function of the temperatureT and of the magnetic fielduHu in the vicinity
of Tc . This property is supposed to hold for any classicald-dimensionalO(n),n.2, model with a film
geometry under periodic boundary conditions whend<3. An analytical evidence is also presented to confirm
that the Casimir force in the system is negative both below and in the vicinity of the bulk critical temperature
Tc . @S1063-651X~98!04508-5#

PACS number~s!: 05.50.1q, 05.20.2y, 75.10.Hk
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I. INTRODUCTION

The Casimir effect is a phenomenon common to all s
tems characterized by fluctuating quantities satisfying so
conditions on the boundaries of the system~for a general
review on the Casimir effect see, e.g.,@1,2#!. In the statistical
mechanical systems the Casimir force is usually charac
ized by the excess free energy

f a,b
ex ~T,L !5 f a,b~T,L !2L f bulk~T!, ~1!

due to the finite size contributions to the free energy of fin
systems with a film geometryL3`2, where boundary con
ditions a and b are imposed on the surfaces bounding
system across the directionL. Here f a,b(T,L) is the full free
energy per unit area~and perkBT) of such a system andf bulk
is the corresponding bulk free energy density. The Casi
force

f Casimir
a,b ~T,L !52

] f a,b
ex ~T,L !

]L
~2!

then arises naturally in the thermodynamics of these confi
systems.

For O(n)-symmetric model systems (n>1), depending
on the boundary condition (a,b) and onn, f a,b

ex (T,L) may or
may not contain contributions independent ofL. For the
Ising-like systems, i.e.,n51, these can be the surface fre
energiesf s,a(T) and f s,b(T), and the interface free energ
f i(T) ~for brevity we consider the dependence on the te
peratureT only!. For theO(n),n>2, models these will be
only the contributions stemming from the surface free en
gies because the analog of the interface free energy is
helicity modulusY(T) and the corresponding contribution
of the orderY(T)/L. In generalat the critical temperatureTc
~of the corresponding bulk, i.e.,L5`, system! the full free
energyf a,b(T,L) has the asymptotic form
PRE 581063-651X/98/58~2!/1455~8!/$15.00
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f a,b~Tc ,L !>L f bulk~Tc!1 f s,a~Tc!1 f s,b~Tc!1L2~d21!Da,b

1•••, ~3!

whered is the dimensionality of the considered system a
Da,b is the so-called Casimir amplitude. TheL dependence
of the Casimir term@the last one in Eq.~3!# follows from the
scale invariance of the free energy and has been derive
Fisher and de Gennes@4#. The amplitudeDa,b is universal,
depending on the bulk universality classand the universality
classes of the boundary conditions@2,3#. In the present ar-
ticle we will only consider the case of periodic bounda
conditions~which implies thatf s,a5 f s,b5Y[0). Then, ac-
cording to the standard finite-size scaling theory~see, e.g.,
@3# for a general review!, near the critical temperatureTc and
in the presence of a small external magnetic filedh the be-
havior of f ex is given by

f ex~ t,h,L !5L2~d21!Xex~attL
1/n,ahhLD/n!, ~4!

where t5(T2Tc)/Tc is the reduced temperature,h
5H/(kBT), at andah are nonuniversal scaling factors,Xex is
universal ~usually geometry dependent! scaling function,
Xex(0,0)[Dper, andn andD are the corresponding~univer-
sal! scaling exponents.

An interesting point of view on the properties of the e
cess free energy comes from the finite-temperature gene
zations of the Zamolodchikov’sC theorem@6# for quantum
systems with arbitrary dimensionality due to Netto and Fr
kin @7# ~see also Zabzin@8#; for a general review on phas
transitions in quantum system see, e.g.,@9,10#!. They define
from the free energy a functionC of the coupling constants
and the temperature that is a positive and, in the regim
where the quantum fluctuations dominate, a monotonic
increasing function of the temperature. TheC function is, in
fact, ananalog of the excess free energyof the system that
they consider.
1455 © 1998 The American Physical Society
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1456 PRE 58DANIEL M. DANCHEV
Before passing to a discussion of some details it se
necessary to comment on the well known point that for te
perature driven phase transitions withTc.0 the quantum
fluctuations are unimportant near the temperature crit
point. Therefore, it seems that the properties of the sys
around one quantum critical point~with respect to a given
quantum parameter, say,g) at T50 cannot tell us anything
about the properties of this system around its tempera
critical point Tc.0. In fact the dimensional crossover ru
helps to make a bridge between these phenomena. Accor
to this rule the critical singularities~with respect tog, T
50) of a d-dimensional quantum system areformally
equivalent to those of ad1z classical one (z is the dynami-
cal critical exponent! and critical temperatureTc.0. On that
idea are actually based the investigations of the lo
temperature effects in quantum systems~see, e.g.,@11–14#!,
i.e., one considers aneffective systemwith d infinite space
and z finite ‘‘temperature’’ ~‘‘imaginary-time’’! dimensions
LT;@\/(kBT)#1/z with periodic boundary conditions, an
applies the methods of the finite-size scaling theory~in what
follows we will set \5kB51). An exact lattice realization
of these ideas is presented in@15#.

Since the generalizations of the Zamolodchikov’sC theo-
rem are formulated for quantum systems withz51, in the
remainder we will focus our attention on such class of s
tems only. For these systems Netto and Fradkin define@7#
the dimensionless function

C~b,g,a!52bd11ñ~d! lim
V→`

V21@FV~b,g,a!2E0~g,a!#,

~5!

whereE0 is the zero-temperature energy, i.e., the energy
the ‘‘infinite’’ system, V is the volume (V→`, but N/V is
fixed, whereN is the number of particles!, ñ(d) is a positive
real quantity,b51/T , FV is the full free energy of the ‘‘fi-
nite’’ system ~where the only ‘‘finite’’ dimension is the
‘‘temperature’’ one, i.e., the ‘‘geometry’’ of the system
`d3LT) anda is the characteristic length scale of the lattic
The real positive quantityñ(d) is supposed to be of the form
vd/n(d), wheren(d) is a positive real number~which de-
pends only on the dimensionality of the system! andv is the
characteristic velocity~e.g., the velocity of the quasipart
cles! in the system. Obviously, the exact choice ofn(d) does
not effect the monotonicity properties of theC function. In
@7# the definitionsn(d)5G@(d11)/2#z(d11)/p (d11)/2 for
bosons andn(d)5G@(d11)/2#z(d11)(22212d)/p (d11)/2

for fermions have been proposed.
In accordance with the dimensional crossover rule

statement thatC is a positive and a monotonically increasin
function of the temperature can be ‘‘translated’’ in a sta
ment that the function2Xex of the corresponding classica
system is positive and a monotonically increasing function
L21; see Eqs.~1! and~4! ~of course, the last is equivalent t
a statement thatXex is a negative and a monotonically in
creasing function ofL). In @7,8# it is shown that the mono
tonicity of the C function is related to the absence of lon
range order in the systems under consideration. The e
tence of long range order destroys the general validity of
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monotonicity. Within the classical systems no long-range
der exists above their bulk critical point. So, we expect
statement formulated forXex to be generally valid aboveTc

for any classical system. Supposing that this is true and
calling that in the vicinity ofTc Xex is a function of the
scaling variablesx15attL

1/n and x25ahhLD/n, which both
are monotonically increasing functions ofL, we come to the
conclusion thatin the vicinity of its critical temperature
(T>Tc) the excess free energy of a given system is a mo
tonically increasing function of any of its scaling paramete
when the other one is kept fixed.Sincex1 andx2 are mono-
tonically increasing functions of the temperature and
magnetic field, respectively, the last implies thatXex, in the
vicinity of Tc , is a monotonically increasing function of
(t.0) and h too. It is possible to present some arguments
support thatthe above statement can be extended to the
gion t,0 for O(n),n>2, systemsin contrast with the Ising-
like systems. The reasoning for the difference in the expec
behavior of the excess free energy inO(n) and Ising-type
models is closely related to the well known differences in
behavior of the correlation lengthj`(T) in these models: in
the Ising modelj`(T),` both below and above the bul
critical temperature, whereas inO(n), n>2, models below
Tc and in the absence of an external filed (h50), due to the
existence of soft modes in the system~spin waves!, j`(T) is
identically infinite. On that basis one expects that, away fr
Tc , Xex will tend to zero exponentially fast inL ~see, e.g.,
@3#! for the Ising-type models, and, therefore, being of t
order of L2(d21) around Tc , Xex cannot be a monotonic
function of its scaling parameters in the vicinity ofTc . In
O(n), n>2, models the finite size corrections should be
sential not only in the vicinity but also belowTc @5#. In other
words, we expect the monotonicity in the behavior of t
correlation length inO(n), n>2, models aroundTc to be
mirrored by a corresponding monotonic behavior of the
cess free energy. If an external field is applied (hÞ0) then
j`(T,h),` and, of course, we expect thatXex→0 exponen-
tially fast with L again, similarly to the Ising-like system
behavior. But, sinceXex,0, for any fixedt,0 the last im-
plies thatXex will be a monotonically increasing function o
the magnetic field in the under critical vicinity ofTc too.

The statements presented above should be considere
course, only as aplausible hypothesis, which has to be
checked in order to probe the region of its validity. For e
ample, it is under question if the monotonicity property
Xex will still hold if the finite system undergoes a phas
transitions of its own. It is reasonable to believe that t
hypothesis holds for anyO(n), n>2, system withd<3
~then in the finite system with short range interaction th
will be no ‘‘real’’ phase transition!.

In the present article we will show, within the three
dimensional mean spherical model, thatin the vicinity of Tc
the excess free energy scaling function Xex is, indeed,a
monotonically increasing function of any of its scaling p
rameters(x1 and x2) when the other one is kept fixed.The
last implies thatXex is a monotonically increasing function o
t, h, andL aboveTc , and a monotonically increasing, wit
respect tot and h, but a monotonically decreasing, wit
respect toL, function belowTc .
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Let us turn now to the behavior off Casimir. From Eqs.~2! and
~4! it immediately follows that@5#

f Casimir~ t,h,L !5L2dXCasimir~x1 ,x2!, ~6!

where the Casimir force scaling function is

XCasimir~x1 ,x2!5~d21!Xex~x1 ,x2!2
1

n
x1

]

]x1
Xex~x1 ,x2!

2
D

n
x2

]

]x2
Xex~x1 ,x2!. ~7!

Note thatXCasimir is again auniversalfunction of x1 andx2.
We recall that for finite-size systems this means thatXCasimir
will be the same for all systems of the same universa
classand geometry and boundary conditions. It is believ
that if a[b the Casimir force will be negative~see, e.g.,
@16,17#; strictly speaking, for an Ising-like system this
supposed to be true above the wetting transition tempera
Tw @16–19#!. In the case of a fluid confined between iden
cal walls this implies that then the net force between
plates will be attractive for large separations. One of
goals of the present article is to prove analytically this g
eral expectation, i.e., thatXCasimir(x1 ,x2),0 for any
(x1 ,x2)PR2, on the example of one exactly solvable mod
We will also show that ifT,Tc andH50 the Casimir force
is a monotonically increasing function of the temperatu
We believe that these properties are valid for anyO(n),n
>2, model.

The full temperature dependence of the Casimir force
been investigated exactly in two-dimensional Ising strips
Evans and Stecki@16#, whereas the upper critical temper
ture dependence of the force inO(n) systems has been con
sidered by Krech and Dietrich@20# by means of the field-
theoretical renormalization group theory in 42e dimensions.
~For the Ising-like case they have derived also some res
for T,Tc .) The only example where an exact expression
the Casimir force as a function of both the temperature
the magnetic field is available is that of the thre
dimensional mean spherical model@5#. By numerical evalu-
ation of the expressions derived there it has been shown
the force is negative, i.e., it is consistent with an attraction
the plates confining the system. The most results availab
the moment are for the Casimir amplitudesDa,b . For two-
dimensional systems atT5Tc by using conformal-field
theory methods the amplitudes are exactly known for a la
class of two-dimensional models@2,24,25#. In addition to the
‘‘flat geometries’’ recently some results about the Casim
amplitudes between spherical particles in a critical fluid ha
been derived too@26#. For d53 the results for the Casimi
amplitudes available in the Ising-like case have been
tained by Migdal-Kadanoff renormalization-group calcu
tions @21#, by some interpolation of the exact values ford
52 andd54 @20#, and, relatively recently, by Monte Carl
methods@22,23#. For n>2 the only existing results are ob
tained by thee-expansion technique, where the calculatio
are performed up to the first order ine @20#.

In the present article the hypotheses for the monotoni
of the excess free energy and that the Casimir force is n
tive under periodic boundary conditions will be verified an
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lytically on the example of the three-dimensional me
spherical model. We will present also simple analytical
sults for the universal values of the Casimir amplitude a
the Binder’s cumulant ratio. If one takes the normalizati
factor of the analog of theC function in the form for bosons
~this will keep theC function of the critical Gaussian mode
to beC51 for anyd), it will be shown that the‘‘C function
of the three dimensional spherical model’’ is4/5 at the criti-
cal point. As is well known, the infinite translational invari
ant spherical model is equivalent to then→` limit of the
correspondingn-component system@27#.

The results we are going to present are an extension
continuation of those published in@5#. In the notations and
the definitions in the remainder we will closely follow@5#.
That is why here we only briefly recall, in Sec. II, the de
nition of the model and give the final expressions, obtain
there, for the excess free energy and the Casimir force, w
will be our starting expressions for the aims of the curre
article. In Sec. III we verify the hypotheses, formulate
above, for the excess free energy and the Casimir force
Sec. IV we derive the exact universal values for the Casi
amplitude and the Binder’s cumulant ratio. The paper clo
with concluding remarks given in Sec. V.

II. THE MODEL

We consider the ferromagnetic mean-spherical mo
~see, e.g.,@28,29# for a general review! on a fully finite
d-dimensional hypercubic latticeLd of uLu sites and with
block geometryL13L23•••3Ld , where Li ,i 51, . . . ,d
are measured in units of the lattice spacing. The Hamilton
has the form

bHL
b.c.~$s i% i PL!52

1

2
K (

i , j PL
Ji j

b.c.s is j1s(
i PL

s i
2

2h(
i PL

s i . ~8!

Heres iPIR,i PLd @s i[s(r i)] is a variable, describing
the spin on lattice sitei ~at r i), s is the spherical field,K is a
dimensionless coupling,Ji j

b.c. is a matrix with dimensionless
elements, so that (K/b)Ji j

b.c. is the exchange energy betwee
the nearest neighbors~under boundary conditions b.c.! spins
at sitesi and j ~of course,Ji j

b.c.5Jji
b.c.), andh is the external

magnetic field. The dependence on the boundary condit
is denoted by a superscript b.c.

The scaling function of the free energy density of t
spherical model has been discussed in detail in the litera
for different boundary conditions, dimensionalities, and g
ometries of the system, for both the cases of short as we
for long range interactions in the Hamiltonian@3,29–32#. By
any of the approaches used there one can, of course, d
an expression for the excess free energy scaling funct
Here, ford53 and under periodic boundary conditions w
will take it in the form given in@5#:
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Xex~x1 ,x2!5
1

2
~4p!23/2F (

k50

`
~21!k~yL

k112y`
k11!

~k11!! ~k21/2!

2A4pE
1

`

dx x22@112R~4p2x!#exp@2yLx#

22E
0

1

dx x25/2R~1/4x!exp@2yLx#

1E
1

`

dx x25/2exp~2y`x!G1
1

2
x2

2S 1

y`
2

1

yL
D

1
1

2
x1~y`2yL!, ~9!

where

R~x!5 (
q51

`

exp@2xq2#, ~10!

x15~K2Kc!L,x25Kc
21/2hL5/2 ~11!

are the scaling variables~note the difference in the defini
tions of x1 here and in the Introduction; nowx1 decreases
whenT increases!,
d-
Kc5E
0

`

dx@exp~22x!I 0~2x!#350.252 73••• ~12!

is the critical coupling, andyL andy` are the solutions of the
spherical field equations that follow from Eq.~9! by requir-
ing the first partial derivatives of the right-hand side of E
~9! with respect toyL andy` to be zero.

For the finite-size scaling function of the Casimir forc
one immediately obtains from Eqs.~6!, ~7!, ~9! and the defi-
nitions of the scaling variablesx1 andx2 @5#

XCasimir~x1 ,x2!52Xex~x1 ,x2!2
5

2
x2

2S 1

y`
2

1

yL
D

2
1

2
x1~y`2yL!. ~13!

Equations~9!–~13! provide the basis of our further analy
sis.

III. VERIFICATION OF THE HYPOTHESES

We will prove analytically that the finite-size scalin
function of the excess free energy, given by Eq.~9!, is a
monotonically increasing function of any of its scaling p
rametersx1 andx2 when the other one is kept fixed. First, b
using the identity
(
k50

`
~21!kyk11

~k11!! ~k21/2!
52

4Ap

3
y3/22

2

3
yE

1

`

x23/2exp~2x!dx2
2

3
@12exp~2y!#, ~14!

the Jacobi identity for theR function @see Eq.~10!#

R~4p2x!5
1

2H 1

A4px
F112RS 1

4xD G21J , ~15!

and taking into account that

E
0

` dx

x5/2
RS 1

4xDexp~2xy!54Ap$AyLi2@exp~2Ay!#1Li3@exp~2Ay!#%, ~16!

after some elementary manipulations we obtain from Eq.~9!

Xex~x1 ,x2!52
1

2pF1

6
~yL

3/22y`
3/2!1AyLLi2@exp~2AyL!#1Li3@exp~2AyL!#G1

1

2
x2

2S 1

y`
2

1

yL
D1

1

2
x1~y`2yL!, ~17!
where Lip(z) are the polylogarithm functions. The main a
vantage of the above representation ofXex is the existence of
some nontrivial identities@33,34# for the polylogarithm func-
tions ~see next section! that allow the universal constantD
5Xex(0,0) to be expressed in a simple closed form.

The spherical field equations foryL and y` can be now
rewritten in the well known and very simple forms@see, e.g.,
for h50, Eq. ~86! in @30##
x15
x2

2

yL
2

2
1

2p
lnF2 sinhS 1

2
AyLD G , ~18!

and

x15
x2

2

y`
2

2
1

4p
Ay`, ~19!
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where the first equation is for the finite and the second
for the infinite system, respectively. In order to obtain E
~18! use has been made of the facts thatdLi p(x)/dx
5Li p21(x)/x and Li1(x)52 ln(12x). Let us denote by
gL(x2 ,yL) the right-hand side of Eq.~18! and byg`(x2 ,y`)
the right-hand side of Eq.~19!. Then, it is easy to see that

gL~x2 ,y!5g`~x2 ,y!2
1

2p
ln@12exp~2Ay!#. ~20!

From the above equation and having in mind that in E
~18! and ~19! yL.0, y>0 we conclude that

gL~x2 ,y!.g`~x2 ,y!. ~21!

It is also elementary to verify thatgL(x2 ,yL) andg`(x2 ,y`)
are monotonically decreasing functions ofyL and y` , re-
spectively. Let nowy`(x1 ,x2) be the solution of Eq.~19! for
givenx1 andx2 . Then, from Eq.~21!, the fact thatgL(x2 ,y)
is a monotonically decreasing function ofy, and that for the
solution yL(x1 ,x2) of Eq. ~18! one should havegL(x2 ,yL)
5g`(x2 ,y`), we obtain

yL~x1 ,x2!.y`~x1 ,x2!. ~22!

We are now ready to deal with the monotonicity propert
of the excess free energy scaling function. From Eq.~17! and
having in mind the spherical filed equations~18! and~19! we
derive

]Xex

]x1
52

1

2
~yL2y`! ~23!

and

]Xex

]x2
52x2S 1

yL
2

1

y`
D . ~24!

From these expressions and Eq.~22!, taking into account the
definitions of the scaling variables~11!, we obtain that the
excess free energy scaling function is a monotonically
creasing function of both the temperatureT and the magnetic
field uHu. As a function of the finite sizeL of the system the
scaling function is monotonically increasing above and
creasing belowTc . These properties of the scaling functio
as a function of the scaling variablesx1 andx2 are illustrated
in Fig. 1. One clearly sees that for any fixedx2 the scaling
function is a monotonically decreasing function ofx1 , and,
for any fixedx1 a monotonically increasing function ofux2u.
Finally, it is worth mentioning that, forx250 from Eqs.~17!
and ~22!, it immediately follows thatXex,0. From Fig. 1
one observes that this is true also forx2Þ0.

We turn now to properties of the Casimir force. Our a
is to show that the force is negative under periodic bound
conditions for any values ofT andH. The finite-size behav-
ior of the Casimir force in the vicinity of the critical point i
given by Eq.~6! where the scaling function is given by Eq
~13!. For T,Tc the same expressions are actually valid w
the only difference that the definition of the variablex2 now
should bex25K21/2hL5/2 andx1@1. Here we are not going
to discuss if then the above expressions can be simpl
further, e.g., being a function of a given combination ofx1
e
.

.

s

-

-

ry

d

andx2 , as is usually the case of first order phase transiti
@35#!. For T way aboveTc the Casimir force, as shown in
@5#, tends to zero exponentially fast withL in full accordance
with the general expectations about its behavior above
critical point. We will not be interested in the explicit form
of these exponentially small corrections. Having in mind
these comments, for the behavior of the Casimir force
any T andH one obtains explicitly

f Casimir~ t,h,L !5L23H 3

2
x2

2S 1

yL
2

1

y`
D2

1

2
x1~yL2y`!

2
1

pF1

6
~yL

3/22y`
3/2!1AyLLi2@exp~2AyL!#

1Li3@exp~2AyL!#G J . ~25!

Since the inequality~22! is still valid, from the above expres
sion it immediately follows thatf Casimir(t,h),0. Numerical
evaluation of the behavior of the finite-size scaling functi
of the Casimir force has been given in@5#. It is in full agree-
ment with our analytical result. Finally we show that forT
,Tc andh50, i.e.,x1.0 andx250, the Casimir force is a
monotonically increasing function of the temperature, i.e
monotonically decreasing function ofx1 . From Eq.~25! and
taking into account thaty`50 whenT,Tc we obtain

d

dx1
XCasimir~x1,0!52

1

2
yL1

1

2
x1

dyL

dx1
. ~26!

From Eq.~18! it is easy to see thatdyL /dx1,0, and, there-
fore dXCasimir(x1,0)/dx1,0, i.e., the Casimir force is an in
creasing function ofT for T,Tc andh50.

In this way we have completely verified the hypothes
formulated in the introductory part of the article for the b
havior of the excess free energy and the Casimir force.

FIG. 1. The universal finite-size scaling function of the exce
free energyXex as a function of the scaling variablesx15L(K
2Kc)/Kc and x25Kc

21/2hL5/2. For a better visualization of the
properties ofXex we have allowedh to change its sign. Of course
Xex is a symmetric function ofx2.
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IV. CASIMIR AMPLITUDE, C FUNCTION, AND
BINDER’S CUMULANT RATIO

Here we will be interested in the properties of the syst
at its bulk critical point. This impliesx15 x250 with a
solution of the spherical field equations@see Eqs.~19! and
~18!# y`50 and yL[yL,c54ln2@(11A5)/2# ~this value of
yL,c is well known and seems to have been derived for
first time in @36#!. The problem of determination of the Ca
simir amplitude reduces now to exact evaluation of the
pression

Xex~0,0!52
1

2pF1

6
yL,c

3/21AyL,cLi2@exp~2AyL,c!#

1Li3 @exp~2AyL,c!#G . ~27!

Denoting byt the ‘‘golden mean,’’ i.e.,t5(11A5)/2, it is
easy to show that

exp~2AyL,c!5t22522t, ~28!

which reduces the above problem forXex(0,0) to the prob-
lem for evaluation of the expression

a5Li3~22t!2 ln~22t!Li2~22t!2 1
6 ln3~22t!. ~29!

Fortunately, this is exactly the problem solved by Sachd
@34# studying his example of a conformal field theory
three dimensions. By the help of some polylogarithm iden
ties he has shown thata54z(3)/5. Therefore, we obtain fo
the Casimir amplitude of the three dimensional spher
model under periodic boundary conditions

D52
2z~3!

5p
'20.153 051. ~30!

The numerical value of this amplitude has already been
ported in@5#. Recalling now that2Xex(0,0) corresponds to
the analog of theC function for our model and taking th
normalization factor in the form that will keep theC function
of the critical Gaussian model to beC51 for anyd ~i.e., by
taking the normalization in the form for bosons! we conclude
that the ‘‘C function of the spherical model’’ is4/5 ~at T
5Tc for d53 under periodic boundary conditions!.

Let us turn now to a determination of the Binder’s cum
lant ratio for the considered model. We will use for it th
definition of the form@3# ~up to a prefactor 1/3)

BL52L2d
x~4!~ t,h50,L !

3x~2!~ t,h50,L !
, ~31!

wherex (n) means thenth derivative with respect ofh of the
free energy density ath50 ~of course,x (2)52x, wherex
is the susceptibility of the system!. In the vicinity of the
critical point this expression can be rewritten in the form
e

-

v

i-

l

e-

-

BL~x1!52
1

3H ]4X~x1 ,x2!/]x2
4

@]2X~x1 ,x2!/]x2
2#2J

x250

, ~32!

whereX(x1 ,x2) is the finite-size scaling function of the fre
energy density. The exact form of this function follows fro
Eq. ~17! just by omitting the terms depending ony` in it, i.e.,

X~x1 ,x2!52
1

2pF1

6
yL

3/21AyLLi2 @exp~2AyL!#

1Li3@exp~2AyL!#G2
1

2

x2
2

yL
2

1

2
x1yL .

~33!

From the above expression at the critical point it imme
ately follows that

B[BL~x150!52F 2yL,c
21S ]yL

]x2
D

x15x250

2

2S ]2yL

]x2
2 D

x15x250
G .

~34!

By subsequent differentiation of the spherical field equat
for the finite system~18! it is easy to show that at the critica
point ]yL /]x250, whereas

S ]2yL

]x2
2 D

x15x250

5
16p

yL,c
3/2coth~AyL,c/2!

. ~35!

Combining these results and having in mind thatyL,c
54ln2t we obtain for the Binder’s cumulant ratio at the crit
cal point

B5
2p

A5 ln3t
'25.216 57. ~36!

Having the exact solution for the spherical field equation a
such a simple form for the free energy density, one can ea
determine in an exact manner the behavior of other ph
cally interesting quantities atT5Tc . For example, it is easy
to show that the specific heat is of the form

cL~Tc!5
1

2
2L21

16p

A5
Kc

2ln t, ~37!

and that the critical finite-size correlation length
(jL5L/AyL @32,37#!

jL~Tc!5
1

2 lnt
L ~38!

~for explicit results of the behavior ofjL under other geom-
etries, boundary conditions and long ranges of the spin-s
interactions see@32,37–39#!.

V. CONCLUDING REMARKS

In the present paper we present a hypothesis that in
vicinity of the bulk critical temperatureTc of O(n),n>2,
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systems with a film geometryL3`d21 the excess free en
ergy ~due to the finite size of the system! will be, under
periodic boundary conditions, a monotonically increas
function of the temperature and the magnetic field if the
nite system does not undergo a real phase transition o
own ~i.e., whend<3 for systems with short-range intera
tions!. As a function of the finite sizeL of the system the
finite size scaling function of the excess free energy is
pected to be monotonically increasing above and decrea
belowTc . This hypothesis, together with the hypothesis t
the Casimir force should be negative under periodic bou
ary conditions have been verifiedanalytically on the ex-
ample of the three-dimensional mean spherical model. It
been shown that the force is negative in the whole region
the thermodynamic parameters. In addition the unive
Casimir amplitudeDper and the Binder’s cumulant ratio
have been determined exactly in a simple close form
found to be Dper522z(3)/(5p)'20.153 051 and B
52p/$A5ln3@(11A5)/2#%'25.216 57. For comparison w
give the corresponding result for the Ising universality cla
Dper520.152660.0010@23#, andB5 0.61560.003@40,41#
obtained by Monte Carlo calculations. As we see, the va
for the Casimir amplitude for the spherical model issurpris-
ingly close~within the error bar! to the value reported abov
for the Ising model. The vast difference for the cumula
ratio indicates the lack of a real phase transition in the th
dimensional spherical model film in comparison with t
Ising-like films. Actually, in three-dimensional Ising film
the situation is more complicated@42#. If the thickness of the
film L is held constant and the other two linear dimensionsD
tend to infinity, the cumulant ratio converges to the tw
dimensional Ising value (B5 0.615). However, if the ratio
L/D is not too small, there exist crossover problems. In a
case the value ofB is between that for the two-dimension
system and that for the three-dimensional system (B50.47
@43#!. The value ofB for the spherical model shows that th
probability distribution atTc of the order parameter densit
is too different from a single Gaussian, whereB50, or from
a normalized sum of two Gaussians, whereB52/3. This, of
course, raises the question what then that distribution is,
this question is out of the scope of the current article. T
situation recalls the one of Ising strips~no real phase transi
tion in the system! with B52.4604460.00006 @3,40,44#.
The crossover problems in Binder’s cumulant ratio can
studied within the spherical model, considering a 31« di-
mensional film,«.0 ~then in the finite system there will b
a real phase transition!. This is also an interesting problem
especially if one takes into account that there are almos
exact results for the Binder’s cumulant ratio, but it is aga
out of the scope of the current article.

The results reported in the current investigation are in
agreement with the predictions of the finite-size scal
theory. Equations~17!, ~18!, ~19!, ~25!, and ~33! give the
universalfinite-size scaling function of the excess free e
ergy, Casimir force, and free energy density. It should
however, emphasized that in contrast to the Ising-like c
the excess free energy, and, therefore, the Casimir forc
the absence of an external field tend to zero belowTc not in
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an exponential inL way. For example, the finite-size scalin
functions of the excess free energy and Casimir force ten
a constant belowTc @see Eq.~31! in @5##. The explanation of
this behavior, which, we believe, is common for a
O(n),n>2, models, is based on the fact that due to
existence of soft modes in the system~spin waves! belowTc
and in the absence of an external field (h50) jb is identi-
cally infinite. If an external field is applied (hÞ0) thenjb
,`, and, of course,f ex→0 again exponentially fast inL .

Finally, it is worth mentioning the close parallel that e
ists between the properties of theC function defined by
Netto and Fradkin @7#, see also Zabzin@8#, for a
d-dimensional quantum system as a function of the temp
ture T and the properties of the excess free energy sca
function 2Xex of the corresponding classical system as
function ofL21. If in the finite system a real phase transitio
does not exist, and if the system is somehow equivalen
the O(n),n.2, system we have proposed some argume
that2Xex is a monotonically increasing as a function ofL21

aboveTc and decreasing belowTc . We would expect the
same to be true for theC function of the corresponding quan
tum system as a function ofT around its quantum critica
point. If the classical system is equivalent to some Ising-ty
model, the same type of arguments we have used for
O(n),n.2, models, taking into account the lack of monot
nicity of the correlation length in the vicinity ofTc , lead to
the hypothesis that2Xex will be a monotonic function of
L21 both below and aboveTc . For the correspondingC
function of a quantum system that has its mapping into
classical Ising system~according to the dimensional cros
over rule! this means thatC is a monotonically increasing
function of the temperature both below and above its qu
tum critical point. This is indeed the case plotted in Fig. 2
@7# for the quantum version of the two-dimensional Isin
model. Finally we would like to stress that the relative
simple picture described here should probably change
nificantly, if the finite system undergoes a phase transition
its own. In that case the upper critical part of the excess f
energy scaling function for 42« Ising model is known@20#
~up to a first order in«,«.0). It shows aminimumin Xex, as
a function ofT slightly above Tc . Unfortunately, no results
are available forXex whenT,Tc,L , whereTc,L is the shifted
critical temperature of the finite system. It is possible to
vestigate the above problems exactly within the spher
model with 31« infinite dimensions. We hope to return t
this problem later.
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